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ASYMPTOTIC BEHAVIOR OF NONEXPANSIVE 
MAPPINGS IN NORMED LINEAR SPACES 

BY 

ELON K O H L B E R G  AND A B R A H A M  NEYMAN* 

ABSTRACq- 

Let T be a nonexpansive mapping on a normed linear space X. We show 
that there exists a linear functional f, II/'1[ = l, such that, for all x E X, 
lim._~f(T"x/n)=lim,_~HT"x/n[[=a, where a - - i n f , ~ c l [ T y - y l l .  This 
means, if X is reflexive, that there is a face F of the ball of radius a to which 
T"x/n converges weakly for all x (inf,~Fg(T"x/n- z)---~O for every linear 
functional g); if X is strictly convex as well as reflexive, the convergence is to a 
point; and if X satisfies the stronger condition that its dual has Fr6chet 
differentiable norm then the convergence is strong. Furthermore, we show that 
each of the foregoing conditions on X is satisfied if and only if the associated 
convergence property holds for all nonexpansive T. 

1. Introduction and statement of main results 

A mapp ing  T:C---~ C on a subset  C of a n o r m e d  l inear space  is called 

nonexpans ive  if II Tx - Ty II--< Itx - Y II for  all x, y E C. Let  S (X* )  = 

{f E X*  : IIflt = 1}. O u r  main result is: 

1.1. THEOREM. Let C be a convex subset of a normed space X and let 

T : C ~  C be nonexpansive. Then there exists an f E S ( X * )  such that for every 

x E C ,  

[ r"x~ lim T"x II. 

Two immedia t e  consequences  are: 

1.2. COROLLARY. T"x /n  converges for all x E C if X has the following 

property : 

every sequence {x, } in X satisfying II x, II = 1 and 
(*) 

f ( x , ) ~  1 for some f ~ S ( X * )  must converge. 
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1.3. COROLLARY. 

property : 

(**) 

T"x /n  converges weakly for all x E C if X has the following 

every sequence {x,} in X satisfying IIx, II = 1 and 

f(x,)---~ 1 for some f E S ( X * )  must converge weakly. 

It is easily verified (see [2]) that (*) holds if and only if X is a Banach space 

whose dual has Fr6chet differentiable norm and that (**) holds if and only if X is 

a strictly convex and reflexive Banach space. We observe in addition that, since 

IIT"x - T"ytl<--[fx - y l t ,  if T"y /n  converges for some y E C then T"x /n  con- 

verges to the same limit for all x E C. 

We shall also prove converses of Corollaries 1.2 and 1.3. The direct and 

converse statements are summarized in the two theorems below. 

1.4. THEOREM. The following conditions on a Banach space X are equivalent: 

(i) X *  has Frdchet differentiable norm. 

(ii) I f  C is a closed convex subset of X and T : C ~ C is nonexpansive, then 

there exists an x , E  C such that T"x /n  --~ x~ for all x E C. 

1.5. THEOREM. The following conditions on a Banach space X are equivalent: 

(i) X is strictly convex and reflexive. 

(ii) If  C is a closed convex subset of X and T : C --* C is nonexpansive, then 

there exists an x, @ C such that T"x /n  converges weakly to xo, for all x E C. 

The implication (i) f f  (ii) in Theorem 1.4 generalizes the results of Pazy [4], 

Reich [5, 6, 7] and Kohlberg and Neyman [3]. Pazy first proved (ii) with the 

assumption that X is a Hilbert space; Reich [5, 6] extended Pazy's result to a 

wider class of Banach spaces, (namely, spaces X whose norm is uniformly 

G&teaux ditierentiable and whose dual has Fr6chet differentiable norm), but 

with additional restrictions on the set C; Kohlberg and Neyman [3] gave a 

simple geometric proof of (ii) in uniformly convex spaces and Reich [7], using a 

variant of that proof, was then able to drop the previously mentioned restrictions 

on the set C. 

2. Proof of the main results 

If T is nonexpansive then, for every x,y E C, [IT"x/n-T"y/nl t - - -~O and 

limsup._=llT"y/nll<=llTy-Yll. Therefore, if f E S ( X * )  and if a denotes 

infy~c tl Ty - y 11, then 
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(2.1) 

Thus, to prove Theorem 1.1 it is sufficient to show that there exists an 

f E  S ( X * )  such that, for some y E C, l i m i n f , ~ f ( T " y / n )  > a. Assuming, with- 

out loss of generality, that 0 E C, it is therefore sufficient to show that there is an 

f E S(X*) such that 

(2.2) f ( - ~ ) > = a  for all n =  1 , 2 , . . . .  

The mapping T : C ~ C has an obvious extension to a nonexpansive mapping 

on a closed convex subset of the completion of X. There is therefore no loss of 

generality in assuming that X is a Banach space and that C is closed. Since 

0 E C, if r > 0 then T/(1 + r) is a contraction mapping that maps C into C, and 

therefore has a unique fixed point, x(r) ,  satisfying Tx(r)  = (1 + r)x(r) .  Clearly, 

Ilrx(r)ll = I l Z x ( r ) - x ( r ) l l  >- ~, for all r >0 .  

For a = 0, Theorem 1.1 follows trivially from (2.1). The essential geometric 

idea of our proof for a > 0  rests on the fact that, for small r >0 ,  x ( r )  is long 

compared to Tx and hence x(r )  and x ( r ) -  Tx are nearly parallel. It follows that 

II Zx (r) - Zx II -- It rx (r) + x (r) - Zx il is approximately It rx (r)II + It x (r) - Zx II. On 

the other  hand, by nonexpansiveness, II Z x ( r ) -  Z x  It--< I I x ( r ) -  x II. Therefore, 

except for a small error, I I x ( 0 -  Z x  II <= I I x ( r ) -  x II-tl~x(~)ll, that is, application 
of T reduces the distance from x(r )  by at least Ilrx(r)H>=a. A convenient 

algebraic statement corresponding to this geometry is the following. 

2.3. LEMMA. 

PROOF. 

For all r > O and x @ C, 

II T x  - x ( ~ ) ll ~ II x - x ( r ) ll - o, + 2r  t[ T x  t[ . 

I1Tx - x(r)ll = (l + 011Tx - x(011-  r II T x  - x(r)ll 

II T x  - (1 § O x  (r) l l -  II rx  (r)ll Jr 2r II Z x  II 

--< IIx - x (r ) l l -  ~ + 2r II T x  II- O.E.D.  

In what follows, for x ~ 0, fx denotes a linear functional of norm 1 satisfying 

f~ (x) -- II x II- Clearly 

(2.4) II x - y II =< II x II - / 3  implies f, (y) =>/3 

since [I x II- f~ (y) =/~ (x - y) ~ U x - y II. 
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Applying the lemma n times, for x = 0, x = TO,. �9 x = T"-~0 and adding the 

resulting inequalities, we obtain 

llx(r)- TnOIl llx(r)ll - § 2r IIT 011. 
k = l  

By (2.4), therefore, fx~o(T"O)>= na + O(r) and hence f,~,)(TnO/n)>= a + O(r). 

Let f E X*, Ilfll--< 1, be an accumulation point of the f , , , ) in the w*-topology. 

(The existence of such an f is guaranteed by the Banach-Alaoglu theorem.) 

Then f(T"O/n)>= a for all n, so f satisfies (2.2). Obviously f / l l f l l ,  which is in 

S(X*) ,  also satisfies (2.2) and the proof of Theorem 1.1 is complete. 

It remains to prove the implication (ii) ~ (i) in Theorems 1.4 and 1.5. We give 

only the proof for Theorem 1.4, the other being essentially the same. What we 

prove, in fact, is that if X does not have property (i), then (ii) fails even for 

C = X, that is, there exists a nonexpansive mapping T : X  ~ X such that T"O/n 

does not converge. 

Suppose that (i) of Theorem 1.4 is not satisfied, i.e. (*) is not satisfied. Then 

there exist an f E S (X*)  and a nonconvergent sequence {zm} such that Hz,, II = 1 

and f ( z , , ) ~  1. Let 7 be a piecewise linear curve starting at 0 with successive 

segments (t,, - t,, ~)z,, where {t,,} is an increasing sequence of real numbers such 

that to = 0 and lim t,,-dt,, = 0. Let 7(t) be the point on this curve at arclength t 

from 0. Specifically 

y(t)=y(t , , -~)+(t-- t , , -~)Z, ,  if tm-, <= t <= t,,, m = 1 , 2 , . . . .  

Then y( t , , )=  (t~ - tm-,)z,, + O(t~,_,) = tmzm + O(tm-,), SO 

(t. (2.5) 7 / _ z , , ~ 0  a s m ~ o 0 .  
t,, 

Define T : X - - - ~ X  by Tx = y ( I / ( x ) l +  1). Then, for every x and y, Tx and Ty 

lie on 3' and the arclength between them is I If(x)l- I / (y) l l  --< IIx - y II. Hence T 

is nonexpansive. 

For all t _-> 0, we h a v e / ( y ( t ) )  =< II ~,(t)ll--< t. By choosing a subsequence of the 

z,, if necessary, we can assume without loss of generality that E:,~l (t,, - tin-l) x 

(1--f(z~,)) <--<_ ~, which implies t h a t / ( y ( t ) )  _ - t - � 89  

On 7, therefore, T moves each point further from 0 by an arclength between �89 

and 1. It follows that, given any m, there is an n = n(m)  such that 

I I~( t - ) -Tn011-  -< 1 and n <= 2t,~. Hence, by (2.5), convergence of TnO/n would 

imply convergence of {tmz,~/n}. Since tm/n >= �89 and IIz  II = 1, the zm themselves 

must converge, a contradiction. Q.E.D. 
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3. Extensions and remarks 

As in section 2, let a = infy~c II T y - y  II. 

3.1. REMARK. The f in Theorem 1.1 can be chosen, depending on x, so that 

f (T " x  - x)  > na for n = 1 , 2 , . - . .  

For x = 0, this is (2.2). It holds for all x by translation, but Example 3.2 below 

shows that f may have to depend on x. 

3.2. EXAMPLE. Let X be R 2 with II(x , ,x2)l l - lx , l+lx21,  and let Tx be the 

position of x after one unit of time in a flow of constant speed that moves every 

point first toward the vertical axis and then upwards along it. Here  a different f is 

needed to satisfy f (T"x  - x)  >= na depending on whether x lies to the left or the 

right of the vertical axis. (This example is due to J.F. Mertens.) 

3.3. REMARK. In Theorem 1.1 and its corollaries, C need not be convex but 

only star-shaped, i.e.: 

(3.4) There exists z such that z + A (x - z)  E C for all x E C and 0 < A _-< 1. 

This suffices because, without loss of generality, z = 0, and the only use of 

convexity was to insure that Tx/(1 + r) ~ C for all x E C and r > 0. 

In many dynamic programming problems, e.g. [1], a nonexpansive mapping T 

naturally arises such that T"O/n is the average value over the first n periods, 

while rx (r) is the average value when the n th-period return has weight r(1 + r) -n, 

corresponding to discounting at interest rate r. It is therefore interesting to 

compare the behavior of TnO/n and rx(r), as in the following theorem and 

corollary. 

3.5. THEOREM. Let X be a Banach space and C a closed subset of X satisfying 

(3.4). For r > O, let x(r)  be the solution of the equation T(x  - z )  = (1 + r)(x - z ). 

Then there exists an f satisfying Theorem 1.1 and in addition, 

[i0m f(rx(r)) = ! ~  II'x(r)ll = inf II Ty - y II. 
yEC 

PROOf. Assume without loss of generality that z = 0. We saw in the proof of 

Lemma 2.3 that 

II Z x  - x (r)ll--< II x - x (r)l[-  II rx (r)1[ + 2r II Tx II. 

It follows that Itrx(r)ll  <= II T x  - x II + 2rll T x  II and hence, for Ilfll--< 1, 

lim sup f ( r x  ( r ) )  <= lim sup II rx (r)ll =< inf II T x  - x II-- '~" 
r ~ O  r--~O x ~ C  
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To complete the proof, it suffices to show that f in Theorem 1.1 can be chosen 

so that 

(3.6) f(rx (r)) >-_ a for all r > 0. 

We first show that 

(3.7) I Ix(r)-x(s) l l<=]r-s l l lx(s) l l  f o r a l l r > 0  and s > 0 .  
r 

Indeed, since T/(1 + r) is a contraction mapping, (T/(1 + r))"x converges to its 

fixed point x(r) for all x E C, in particular, for x = x(s). Hence 

I}x(r)- x(s)ll<<- ~,1 (~Tr) x(s)-kl + r/ x(s) I 

<== ~ ~-~ x(s)- x(s) 

l+rll+s I = r 1---~/r- 1 IIx(s)[] 

= l s - r f  IIx(s)l I . 
r 

From (3.7), recalling that llsx(s)ll=lIrx(s)-x(s)lle~ for all s > 0 ,  we 
obtain, for all r > s > O, I tx(s) -  x(r)l I N IIx(s)ll- a/r, and therefore, by (2.4), 

[~o)(x(r)) >- a/r. Letting s--*O, we obtain (3.6) for the accumulation point [. 

O.E.D. 
The previous theorem together with the characterizations (*) and (**) 

immediately imply the following: 

3.8. COROLLAgY. If X is a strictly convex and reflexive Banach space then 
both {T"x/n}~-, and {rx(r)},>o converge weakly to the same limit. I f  X*  has 
Frdchet differentiable norm, then the convergence is strong. 
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